CHROM. 16,596

Note

Gas chromatographic behaviour of trimethylsilyl derivatives of some monoterpene alcohols and phenols found in volatile oils

T. J. BETTS*, KRISTINE A. ALLAN and C. A. DONOVAN

School of Pharmacy, Western Australian Institute of Technology, Kent Sreeet, Bentley, W. Australia 6102 (Australia)

(First received December 9th, 1983; revised manuscript received January 24th, 1984)

Monoterpene alcohols are significant components of some volatile oils, *e.g.* linalool in lavender, menthol in peppermint. Phenols of similar molecular size are important constituents of other oils, *e.g.* eugenol in clove, thymol in thyme. One chromatographic method of confirming the identity of such hydroxy-compounds is to note the change in their behaviour following derivatisation. This has previously been applied to a study of trimethylsilyl (TMS) derivatives of some monoterpenols by thin-layer chromatography¹, but not by gas chromatography (GC).

TMS-phenol was first prepared in 1952^2 , but not for GC purposes. Rühlmann was the first to do this in 1961^3 , and he also prepared volatile derivatives of amino acids for GC⁴. TMS-derivatives were also prepared of solutes such as steroids⁵ or pesticides⁶ which were themselves volatile enough for GC. This was done to impart enhanced volatility, stability and decreased polarity to the test solutes, but Fishbein and Zielinski⁶ also found that some elution values for the TMS derivatives (of pesticides) lie very close to those of the parent compounds and sometimes gave increased elution values on the non-polar column. This phenomenon has been confirmed by the present study.

EXPERIMENTAL

Apparatus

Pye 104 gas chromatograph, fitted with flame ionisation detector; hydrogen flow used 40 ml/min. Packed columns as detailed in Table I. Injector heater set at about 200°C. Mobile phase: purified nitrogen at 40 ml/min. Recorder: Perkin-Elmer 56.

Materials

Hydroxy-compounds: various commercial sources, and donations. Samples showed either no other GC impurity peaks, or only small ones.

Silanising reagents: "Tri-sil"[®] or N,O-bis(trimethylsilyl)acetamide from Pierce were used by adding 0.5 ml reagent to a small amount of test hydroxy-compound in a dry screw-capped glass vial, shaking it for 30 sec, then standing it on top of the warm GC oven for a few minutes. The TMS-derivatives were found to be stable at

TABLE I

RELATIVE RETENTION TIMES OF TMS-DERIVATIVES TO PARENT HYDROXY-COM-POUNDS, AND OF THESE TO MENTHOL

	Packed columns used					
	2% SP-2100 (methyl polysiloxane) on Chromosorb 80/100 in glass, 1.5 m × 4 mm I.D.		3% SP-2250 (phenyl-methyl (1:1) polysiloxane) on Supel- coport 100/120 in stain- less steel, 3.0 m × 5 mm I.D.		5% QF-1 (trifluoropropyl poly- siloxane) on Supelcoport 80/100 in glass, 1.5 m × 4 mm 1.D.	
	PA/LEC* for column					
	-117		-11		+ 13	
	TMS/OH**	OH/menthol	TMS/OH	OH/menthol	TMS/OH	OH/menthol
Geraniol	1.78	1.35	1.24	1.55	0.97	1.22
Eugenol	1.76	2.19	1.40	3.46	1.05	2.40
α-Terpineol	1.76	1.06	1.20	1.20	0.98	1.02
Linalool	1.70	0.75	1.26	0.67	1.02	0.77
Terpinen-4-ol	1.63	1.00	1.08	1.05	0.97	0.98
Citronellol	1.45	1.23	0.99	1.27	0.94	1.10
Menthol	1.40	1.00	0.96	1.00	0.95	1.00
Iso-borneol	1.33	0.94	0.83	1.00	0.83	1.00
Borneol	1.24	1.00	0.79	1.05	0.86	1.03
Thymol	1.11	1.52	0.75	2.08	0.83	1.40
t _R Menthol	2.5 min		5.0 min		1.5 min	

Columns at 120°C. Mobile phase: nitrogen at 40 ml/min.

* Average of six differences in retention indices for Linalool, Estragole and Carvone based on normal Paraffin series and normal Alcohol series against those determined on the SP-2250 column at 160°C in 1981⁷.

** OH indicates (parent) hydroxy-compound: monoterpenol or C10-phenol.

room temperature (25-30°C) over several weeks. Both reagents worked equally well, but "Tri-sil" products contained a precipitate (ammonium chloride?). BSA mixtures gave a more complex solvent peak trace, which tended to overlap with TMS-derivatives of short retention time.

RESULTS AND DISCUSSION

The results of subjecting eight monoterpenols and two C_{10} -phenols (dissolved in ethanol) and their TMS-derivatives to GC on three columns of differing polarity are detailed in Table I.

The temperature of 120°C yielded solute retention times of 1–20 min. Work was restricted to various polysiloxane phases as these provide a suitable range of stationary phase polarities, whilst avoiding any chance of reaction with the excess silanising reagent present in the TMS-products.

Column polarities were rated on what is now called the PA/LEC scale used in this laboratory, described by Betts *et al.* in 1981⁷ (see footnote to Table I). This relies

Fig. 1. Plot of relative retention times (t_{Rrel}) for TMS-derivatives vs. parent hydroxy-compounds, against PA/LEC column polarity values (ref. 7).

on each laboratory designating its own standard column; in our case the SP-2250 one used in this work. The retention indices for the three probe solutes against *n*-alkanes and *n*-alcohols at 160°C on this column were originally determined in 1980; three years later, after considerable student use, they have only changed slightly, and are the same at 120°C.

Fig. 1 shows the effect of changing column polarity on the retention times of TMS-derivatives, relative to their parent compounds. On the most non-polar column (SP-2100), no TMS-derivative has a shorter retention time than its corresponding alcohol or phenol, and some are nearly 80% increased. With such a column, silanising these hydroxy-compounds does *not* shorten their retention times, probably because the lowered polarity of the TMS-derivatives makes them a better match for the stationary phase. This confirms the observation of Fishbein and Zielinski⁶. For a QF-1 column, they found variable results, and it can be seen from Fig. 1 that this is due to a general lowering of the relative retention values on this more polar column, so that many of the solutes studied now show a decrease in retention time upon silanising. However, there is a considerable compaction of the values, which all appear likely to become approximately 0.9 on a theoretical column with a PA/LEC value of about +25.

On the SP-2250 column, of intermediate polarity between the other two, half the ten compounds studied show a decrease in retention time upon silanisation. Presumably TMS-thymol and -borneol are the most polar (least non-polar) derivatives, as suggested by their increasing retention times (relatively) once the column becomes somewhat polar (QF-1).

REFERENCES

- 1 J. W. Adcock and T. J. Betts, J. Chromatogr., 34 (1968) 411.
- 2 J. L. Speier, J. Am. Chem. Soc., 74 (1952) 1003.
- 3 K. Rühlmann, Chem. Ber., 94 (1961) 1876.
- 4 K. Rühlmann and W. Giesecke, Angew. Chem., 73 (1961) 113.
- 5 T. Luukkainen, W. J. A. van den Heuvel, E. O. A. Haahti and E. C. Horning, Biochim. Biophys. Acta, 52 (1961) 559.
- 6 L. Fishbein and W. L. Zielinski, J. Chromatogr., 20 (1965) 9.
- 7 T. J. Betts, G. J. Finucane and H. A. Tweedie, J. Chromatogr., 213 (1981) 317.